Real-time Estimation of a Markov Process Over a Noisy Digital Communication Channel

نویسندگان

  • Qing Xu
  • Raja Sengupta
چکیده

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification , or regulation. Abstract We study the real-time estimation of a Markov process over a memoryless noisy digital communication channel. The goal of system design is to minimize the mean squared estimation error. We first show the optimal encoder and decoder can be memoryless in terms of the source symbols. We then prove the optimal encoder separates the real space with hyperplanes. In the case of the binary symmetric channel and scalar source, the optimal encoder can be a threshold. A recursive algorithm is given to jointly find a locally optimal encoder and decoder for the binary symmetric channel. For a memoryless Gaussian vector source and a binary symmetric channel, we show the optimal policy is to encode the principal component. We derive the minimum mean squared error as a function of the variance of source and the channel noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAP Sequence Estimation for Fading ISI

| In this paper we rst describe a Maximum A Posterior (MAP) based sequence estimation approach for unknown, fast fading, frequency selective digital communications channels. The approach incorporates prior probabilistic knowledge of the channel via a stochastic channel model. We then assume a rst order Gauss-Markov channel model to derive a speciic MAP estimator, and we describe a Per Survivor ...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

On Globally Optimal Encoding, Decoding, and Memory Update for Noisy Real-Time Communication Systems

The design of optimal joint source-channel communication strategies for a real-time communication system, i.e., a sequential communication system in which information must be transmitted and decoded withing a fixed-finite delay, is considered. First, a system which runs for a finite horizon and consists of a first-order Markov source, a real-time encoder, a memoryless noisy channel, a real-time...

متن کامل

Enhancement of Noise Performance in Digital Receivers by Over Sampling the Received Signal

In wireless channel the noise has a zero mean. This channel property can be used in the enhancement of the noise performance in the digital receivers by oversampling the received signal and calculating the decision variable based on the time average of more than one sample of the received signal. The averaging process will reduce the effect of the noise in the decision variable that will approa...

متن کامل

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005